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. 
Y FOREWORD 

I 1  The r e sea rch  described in this report, The Application of the 

Method of Quasilinearization to the Computation of Optimal Control, " 

No. 67-49, by Garre t t  Paine, was carried out under the direction of 

C.  T. Leondes in the Department of Engineering, University of California, 

Los Angeles. 

One of the principal goals of this work was the development of the 

method of quasilinearization so that it could be used as an  effective com- 

putational tool in the generation of optimal control. The generation of 

optimal control is of special importance to advanced ballistic systems , 
conventional aircraft systems problems , advanced space systems problems , 

and numerous other important areas. 

This  r e sea rch  was supported by the U. S. Ai r  Force  Contract 

F04701-68-C-0001, Advanced Targeting Study; AFOSR Contract 699-67, 

Basic Controls and the National Aeronautics and Space Administration Con- 

tract N s G  237-62 to the Institute of Geophysics and Inteplanetary Physics 

of the University. 

This report  is based on the Doctor of Philosophy dissertation sub- 

mitted by the author. 
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CHAPTER 1 

INTRODUCTION 

1.1 C c ~ t r c l  Systems Theory and Optimization Techniques 

Currently a large amount of effort is being devoted to the 

optimization of control systems. The effort is usually directed 

either towards the proof of fundamental properties of control sys -  

tems, or, as in this dissertation, towards the improvement of 

computational techniques. 

Without improved computational techniques much of the 

theory must go unused as  its application to  a r e a l  problem is un- 

wieldy. 

There a r e  many ways in which an optimal control problem 

can be formulated and solved: the method of steepest descents, the 

method of second variations, dynamic programming, quasilineari- 

zation, and others. Most have been applied to  solve engineering 

problems of sufficient difficulty to be considered significant. 

The dissertation deals with the application of the method of 

quasilinearization to  the optimal control problem, and to  the im- 

provement of i t s  applicability in  problems where either the control 

cannot be solved fo r  explicitly, o r  where there  a r e  bounds on the 

control, 

generalized Newton-Raphson method. 

The method of quasilinearization is also called the 

1.2 The Current Uses of Quasilinearization 

Several authors have applied the method of quasilinearization 

(QL) to a variety of problems. One of the ear l ies t  applications be- 
1 2 3 

longs to Hestenes, Bellman, and Kalaba, who have shown con- 

vergence proofs using the maximization operation, have employed 

1 



QL to solve a variety of simple, nonlinear differential equations. 

McGil14’ and Kenneth have shown convergence proofs using the 

contraction mapping operation and have employed QL in the solution 

of several  simple nonlinear differential equations. McGill has 

worked a simple bounded s ta te  space problem using the penalty 

function approach. 

6 

22 

12 
Kopp and Moyer, l1 and McGill have compared QL with 

several  other techniques and have used QL to solve some t ra jectory 

analysis problems. 

Sylvester and Meyer7’ combined the method of quasilineari- 

zation with a f i r s t  o rder  integration procedure and have used it to  

solve some problems in mechanics and t ra jectory analysis. Long 

has shown how to apply the method of QL where the final t ime is f r e e  

and  has applied his resul ts  to severa l  estimation problems. 

9 , l O  

The references above that a r e  concerned with the application 

of QL to the  control problem either assume that the maximum 

principle can be used to find the control explicitly so that the control 

can be eliminated from the differential equations, o r  that continuous 

variations about the control vector can be taken. Neither of these 

approaches can handle the case of bounded control directly; instead, 

Valentine1s13 method must be used which resul ts  in an extra t e r m  

to  be carr ied through the calculations. 

difficulties in applying either the method of second variations o r  the 

method of QL to solve problems with bounded control. 

11 Kopp and Moyer have noted 

This  work is directed towards the development of techniques 

that wil l  facilitate the application of the method of QL to control 

problems where bounds on the control exist, and where the final t ime 

is free. Towards this end the convergence proofs of McGi l l  and 

Kenneth have been extended to  cover bounded continuous control 

2 



directly by means of the addition of another t e rm to QL. The work 

of Long has  been modified to  provide more  accurate integration while 

preserving its usefulness in solving problems where the final t ime 

is f ree .  

1 . 3  The Scope of the Dissertation 

The dissertation is directed towards the goals of formulating 

the method of quasilinearization so that optimization problems can 

be handled directly, and of showing that this  is indeed s o  by means 

of a non-trivial example. 

In Chapter 2 the application of the method of quasilinearization 

to  the solution of a two point boundary value problem is discussed. 

The  technique by which unknown constants can be found is included 

here.  In particular it is shown how the period of integration with 

respect  t o  a dummy variable c a n  be fixed by the addition of one 

parameter  even if the final time is free. 

A quadratic convergence proof is given in Chapter 3.  The 

proof is an extension of that found in the l i terature as it allows 

bounds on the control t o  be handled directly. 

A method f o r  extending the  region over which the method 

converges is detailed in Chapter 4. 

extended method is shown. 

The theoretical advantage of the 

In Chapter 5, the numerical techniques used to  solve 

pract ical  problems are discussed. These techniques are applied to  

the problems described below, and can form the basis for  any 

numerical  application of the method of quasilinearization. 

Chapter 6 and Chapter 7 cover the two numerical examples 

used. In Chapter 6 

the solution is used 

the classical Brachistochrone is solved. Here 

to  show that the solution converged much more  

3 



rapidly f o r  the f r ee  t ime problem using the technique of Chapter 2 
6 

than that found in the l i terature.  

Chapter 4 extends the normal region of convergence. 

Brachistochrone is also used to examine the effects of a modified 

integration scheme. 

And it is shown that Method 3 of 

The 

In Chapter 7 the general problem of determining the t r a -  

jectory of a reentering space vehicle to minimize heating is described. 

Two cases are presented. The reentry vehicle problem is solved for 

one case and is also used to  show that the technique for  handling 

bounded control, discussed in Chapter 3,  works well. 

The conclusions and a r e a s  for  fur ther  research  a r e  presented 

in Chapter 8. 

Hereafter the method of quasilinearization will be abbreviated 

to the method of QL. 



CHAPTER 2 

THE METHOD OF QUASILINEARIZATION 

The method of QL is an iterative method for solving two 

point boundary value problems governed by a system of nonlinear 

ordinary first or second o rde r  differential equations. Here there  

are two quantities t o  be satisfied, the differential equations and the 

boundary values. In control problems there  is a third quantity to  

be satisfied: the Maximum Principle. Iterative techniques have 

been built around satisfying one or two of these identically and then 

iterating to satisfy the third. 

For example, the methods of the second variation used by 
15,16 Breakwell, Speyer and Bryson, 23 K e l l e ~ ~ ~  and Scharmack 

satisfy the differential equations , the Maximum Principle and some 

of the boundary conditions exactly. The solution is then iterated 

until the remaining boundary conditions are satisfied. In the method 

of steepest descent the differential equations are satisfied exactly 

but neither the Maximum Principle nor the boundary conditions are 

satisfied. A s  the iterations proceed these are satisfied more and 

more  completely. 

In the method of quasilinearization the boundary conditions 

and the Maximum Principles a re  satisfied exactly. 

in mind that the Maximum Principle is applied along a trajectory that 

is governed by the equations of quasilinearization, not by the state 

equations. The differential equations are  then satisfied more  and 

more  nearly on each iteration. And if convergence occurs it is 

quadratic. 

It must be kept 

1 

5 



The computational procedure of QL can be described simply. 

A solution for  an n dimensional system of first o rde r  differential 

equations is desired.  

that half of the boundary conditions are specs ied  at each end and 

that n is even 

Without any loss  of generality it is assumed 

6 

L ~~ 

n 
2 i = 1,. . . , - are the initial and final boundary conditions, and where 

T, the final time is specified beforehand. 

a priori, that a solution does exist. 

It is fur ther  assumed, 

To initialize the process  of QL an  approximate solution to  the 

differential equations is chosen which satisfies the boundary con- 

ditions. A left superscript  indicates the iteration number. 

yo(t) 0 < t < T  (2 .2)  - -  

Now f o r  iteration number k(k = 0, 1,. . . ,N) solve the following 

sets of equations. N is usually not specified before the process is 

started but is determined by the actual convergence of the solution. 

Inhomogeneous 
(2 .3 )  Equation: 

k 
Homogeneous yk+l(o) = 1 
Equation : 

(2.4) 



A 
where y is an n vector, and Y is an nxn matr ix  with elements Y:;. 

A J  k+i Find a constant n dimensional vector cy , such that the final 

boundary conditions a r e  satisfied by y (T) where k+ 1 

k+l  ,k+l k+l k t l  y = y  + Y  cy 

i.e. , 
n 
2 
- (T) = yf , i =. 1, 2, .  . , k+l  

i Y i  

(2.5) 

kt l -  n 
i 2 Note that if we choose CY - 0, i = 1 , .  . . , - then by con- 

struction the initial boundary conditions will be satisfied by y: 

k+ 1 The vector cy 

on elements of the homogeneous solution, Yk+' at the final time T, 

and the difference between the solution of the inhomogeneous equation, 

can be found by employing a matrix equation based 

n 
2 
- 9k+1 and the desired solution, y i = 1,. . . , 

f, 

This  matrix, Y, evaluated at the final time is called the transition 

matr ix  and it relates smal l  perturbations of the initial conditions to  

small perturbations of the f ina l  state. 

k+l If the elements of Y are independent then a unique value 

for the vector constant cy k+l can be found. 

The columns of Y f rom 1 to !! are  not used and they need not 2 
be actually computed in a computer program. These columns are 

7 



not needed because no perturbations a r e  allowed on the variables 1 

to  !!, as these variables are specified by the initial conditions. 
2 

Since the complete solution of y(t) is required fo r  the next 

iteration either the following computation at every s tep  of the 

integration can be performed, 

(2.9) 
k+l Ak+l(t) + Yk+l( t )  (Y k+l y 0) = Y 

k+i o r ,  preferably, the system equations can be reintegrated using y (0) 

as the initial condition. By reintegrating the system of differential 

equations and comparing the desired final conditions with the actual 

final conditions a check is made on the complete computational 

process. 

The foregoing procedure is repeated until satisfactory con- 

vergence is obtained. Since it is difficult t o  discover the actual 

accuracy of the solution from the equations of QL, the following 

method of verification can be used. 

Once the method of QL has converged the solution may be 

verified by integrating the following system. 

?N+1 N 
= f ( y  , t )  0 - -  < t  < T  

N+l N 
y (0) = y (0) 

(2.10) 

N + l  n 
i = 1 , .. . , - Compare y (T) with y If they do not differ 

f a ’  2 ’  
J, 

by an amount greater  than that which might be expected from an 
N examination of integration procedure, then the solution y may be 

taken as  exact. If not, then the entire computational process must be 

examined for e r r o r s .  



2,2 The Technique With Undetermined Constants - 

A system of unknown constants c, where c is a p dimensional 

vertnr, can be found using the regular QL procedure with only 

sl ight modifications to it. A solution to  the following system is 

de s ir e d : 
j ,  = f(y,c, t)  0 < t < T - -  

(2.11) 

A l s o  

The qls represent the p additional constraints needed to  

determine the C I S ,  which f o r  the sake of notational simplicity are 

assumed to  all be defined at time 0. 

0 Choose an initial trajectory y satisfying the boundary 
0 conditions, and an initial estimate of the constants, c . To find the 

solution iterate the following system of equations: 

k 
(0) = y (0) 

,k+l k 

(0) = I  
k k 

(2.13) 

k 
Where Y k+ 1 is an nxn matrix, Z is a nxp matrix,  (&-I is an nxn 

k 
matrix,  and (E) I is an nxp matrix. 

k+l 

are now determined such that 

Constant vectors CY (m dimensional) and Bk+'(p dimensional) 

9 



A 

k+l  ,k+l k+l k+1 + Z k + l  k+l 
y = y  + Y  ff B 

k+l k k+l 
C = c  + p  

(2 .14 )  

satisfies the initial and final conditions , and l inear  approximations 

to  the q's. 

This  yk+' satisfies the modified QL equation: 

and 

k k+l  af k+l  
y = f I  + ( % ) I  Y. - y k + ( E ) I (  

n 
2 
- = yf J i = * J  

1 I 

k+l  

(2 .15 )  

k+1 
The constant vectors ak+' and B may be found by inverting 

the following system of equations. Again ctk+' is constructed such 

that oi 
n 
2 '  

k+ 1 - = 0 ,  i = 1,  ..., 

(2.16) 

The existence of an inverse depends on the independence of 

the Y's, the Z's and the partials of q with respect  t o  p. 
independence is assumed a priori. 

Here the 

10 



k-tl k+ 1 have been found and y When the vectors oktl and 

generated in accordance with the previous formula by either of the 

two methods suggested in  the discussion of the regular QL procedure, 

it will be found that y 

and more nearly satisfies q = 0. 

kti 
satisfies the specified boundary conditions 

2.3 The Problem of Undetermined Final Time 

In many engineering problems the final time is left un- 

specified and i t  may be a quantity that the optimization procedure is 

required to find. 

With some methods there is no problem in determining the 

final t ime since it falls out naturally through some stopping condition 

on the integration of the equations of motion. In QL on the other 

hand, data f rom prior  trajectories is required and either the inte- 

gration must take place over a fixed interval o r  some method of 

approximating the required data must be found. 

The solution of the two point boundary value problem is 

complicated by the need for  the derivative f and af/ay to  be defined at  

all points along the trajectory i n  the case where the final t ime is not 

specified before hand. 

6 

final time problem a s  a se r i e s  of fixed time problems. 

is a procedure for  iterating on both the solution of the differential 

equation and on satisfying a boundary condition to determine the 

correct  final time. 

McGill and Kenneth solved this difficulty by treating the f r e e  

Their method 

Since the method involves fixing the final time one of the 

other boundary conditions at the final time must be temporarily re- 

laxed. If this were not done then the system would be over- 

determined. 

11 



To s t a r t  the process  a final t ime is guessed and the solution 

is iterated until  the norm of the e r r o r  satisfied some tolerance. 

Then perturbing this 

until the tolerance is 

is employed to find a 

k = tf 

guessed final t ime the solution is again iterated 

satisfied. A t  this  point a recursion formula 
k+l 
f new f ina l  time, t : 

k-  1 
k t;- tf 

i- k k-1 - 'fa ) 
yi - Yf 

(2.17) 

the solution is now iterated with the new final t ime until the tolerance 

is satisfied. 

These last  two steps a r e  repeated until the change in  final t ime is 

less  than some other tolerance and y 

convergence is assumed. Here y is the variable whose terminal a 
value y has been relaxed. 

The recursion formula on final t ime is then employed. 

at which point (t b f e  
k 
a f  

f n  

described a technique which allows the 9 , lO J5 
Recently Long 

f r e e  final t ime problem to be handled directly by the method of QL. 

The technique is a specialized case of the method stated in Section 

2 .2  for handling undetermined constants. It is this method which has 

been used here  to solve f ree  final t ime problems unless otherwise 

noted. 

The method for handling a f r ee  final t ime problem consists of 

changing the problem independent variable from t ime t to a dummy 

variable T, which is a sca la r  multiple of t. Thus we have the 

equations 

' C  
dt 
dr  t 
-- 

where c re la tes  t to r ;  t 

(2.18) 



The variable T is now taken as the independent variable and 

the integration is performed with respect to  it. 

- c  dt 
d7 t 
- -  

(2.19) 

The  range of T is fixed: 0 - -  < 7 < 1 . With 7 fixed the integration is 

simplified considerably. The constant c is now included in the usual 

manner in the QL framework: 
t 

(2.20) 

k Let y be the kth approximation to  the solution. Note that 
k 

y is constructed t o  satisfy the boundary conditions. 

Three integrations are performed, 0 < t - < T 

(0) = I 

Z k t l  = f(y k J7 )  + c: (5)[ k k  z ; z k (0) = 0 

(2 .21)  

A vector CY and a constant f l  a r e  now chosen so that 

k+l-^k+1 k+l T k+1 y - y  + Y  LY +gz 

sa t i s fy  

(2.22) 

(2.23) 

8 
(= denotes equality only on the components of the right-hand 

vector which a r e  specified 

1 3  



yk+l is seen to satisfy 

I 

4 

with 

k+l k 

k+1 k k+l  hk+ 1 
t = c t + B  ; y (0) = y (0) t cr C 

(2.24) 

The method can be modified by making the t ime factor vari- 
29 

able a s  has been suggested by Johnson. In Chapter 6 this is refer red  

to  a s  the modified integration method. 

(2.25) 

dt This variable factor reduces - when j .  is large which is equivalent 
d r  

t o  decreasing the integration s tep  s i ze  when the functions are varying 

rapidly and increase it when the functions are varying slowly. 

The constant a must be chosen by experience. 

F o r  more  generality it may be desirable to use 

(2.26) 

where A is a diagonal matrix. 

then be chosen to  weight the effect of the various state derivatives. 

The elements of the diagonal may 

The additional terms generated by the variable time factor 

while complicated to  write out, are simple for  a computer to generate 

since they consist only of products of terms that are required in any 

case.  

Equations : y = f(y, t) 
1 - 

T 2  

14 

(2.27) 



t 

htegra t ion  with respect to  7 

Equations to  be solved by QL 

3 1  

(2 .29)  

The method used in solving the free final time problem is 

much more  generally applicable than might at first be thought. Often 

a control problem has a discontinuity, and a very  fine integration 

mesh  must be employed to  maintain integration accuracy. 

cases it may be much more  expedient to  use different time constants 

in different par t s  of the integration to  guarantee that the discon- 

tinuities fa l l  at an integration step where they may be handled 

conveniently . 

In many 

9 This technique is used by Long with the restriction that the 

number of breakpoints is known before hand. The technique becomes 

considerably more  powerful if that  restriction is avoided by letting 

the computer determine the number of integration intervals and their  

associated time constants. 
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CHAPTER 3 

A QUADRATIC CONVERGENCE PROOF 

3. 1 The Contraction Mapping Principle 

A proof of the convergence of the method of quasilinearization 

The can b e  shown for  second order  differential equations in general. 

proof of convergence is shown here using the contraction mapping 

principle of functional analysis (see Kolmogorov and Fomin, for  

example). 14 

Definition : Contraction Mapping 

Consider a complete metrix space S., an operator A , and a 

metric p .  The mapping A is said to  be a contraction mapping 

if: 

1) i f y  E R  3 A y ' E S  

2) if y1,y2 E S 

then 

Theorem (The Contraction Mapping Principle) 

Every  contraction mapping defined in a complete metric I1 

space S has one and only one fixed point, i. e. , the equation Ay = y 
I t  * has one and only one fixed point. 

3.2 The Proof of Quadratic Convergence 

The proof given here  fo r  the quadratic convergence of the 
4 method of QL follows McGil l  and Kenneth with the addition of one 

term. The importance of the extra term becomes apparent when 

practical  control problems a r e  to be solved. 
~ 

* 
Reference 14 page 43. 
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It is this additional t e r m  which allows the control to  be 

handled directly and the imposition of constraints on the control with- 

out the  addition of multipliers o r  the use of a penalty function. 

In the proof a method fo r  finding the solution to  a system of 

second order ,  ordinary nonlinear differential equations will be shown. 

The proof is for  a fixed end time problem. 

System: 

Boundary conditions: y(0) = yo, y(T) = yf 

Dimensionality: 

y" = f(y,t ,u),  0 < t < T 

y and f are  n dimensional 

U is m dimensional 

(3.2) 

It is assumed here  that u is of the form: 

= g(>Jt) 

O r  that, if g (u ,yJ t )  = 0 must be solved for  u, then that g 1 has con- 

tinuous second partial derivatives. 
1 

Employing vector notation consider the following system 

whose solution is to  be found. 

y" = f (y , t ,u)  0 < - _  t < T 

P = g ( y A  ( 3 . 3 )  

Now consider the sequence of solutions to the system 
k k+l k k 

= J (y  ~ t )  (y y + f(y ~ t )  = O J ~ ,  * * * J  
&+I Y 

(3.4) 
k y (T) = yf all k 

k 
y ('1 = yoJ 

where 



L 

and 
0 max I yi (t) - YT (t) [ - < k 0 - -  < t < T 

t, i i 

max l y i - y  I < k O < t < T  - -  
i, t A 

T: - 

and 
t 

'T i = ( ' f - ' o . )  i 1 T-'f i 

( 3 . 6 )  

(3.7) 

( 3 . 8 )  

Now provided that 

f is continuous 

- exists and is continuous 

- exists and is continuous 

2 exists and is continuous 

af 
a Y  
af 
ag 

aY 
af 
ag a Y  

m 

A? =1 

af 
a Y  

f and - + - are Lipschitzian with respect to  y 

A unique solution to  (3.  3) exists.  

The series (3.4) converges to  it. 

The e r r o r  bound is given by 

p(y 
k+ 1 2 ktl k 

J -  y)< k2 p (y , y ) where k2 is defined later and 

O <  - k 2 < 1  - (3.9) 

Note that assumption e) is quite restrictive compared to  the 

assumption Kenneth and McGil l  make at this point. However, it must 

be kept in mind that the addition of this t e r m  allows certain com- 

putational short  cuts and that the pr imary  goal of this paper is to 

provide computational results.  

4 
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Define the constants P Rija Qia and M i' i j '  

C R. .  
- 1J 

i af 

n 

/ n  

Define 

(3.11) 

(3.12) 

Y =Y1 

) 'lk- '2k 

A metr ic  space S is defined as 

with a met r ic  

Y'YZ 

(3.13) 

(3.14) 

3.15 

Use'the symbol A to  denote an operator performing a single 

quasilinearization iteration on some yes. 

20 



. 

To show that the contraction mapping principle applies it is 

necessary to show that the operator A has the following properties. 

a) i f  YES then AYES 

b) if yleS and y2eS then 

First show that if YES then AYES. 

By employing the Green's function, G(t,  s), the solution of 

(3.4) can be written 

Is-T - t f o r t  - < s  T 

Not e 

G( t J s )= [  5 (t-T) f o r t  > s 
(3.17) 

Now 

(3.19) 
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. 

so  T2 n m - (nK+l) 
4 

T2 
p(Ay, YT)< 

1 - n m -  4 

(3.20) 

Now fo r  T sufficiently small  

Hence AyeS. 

Second, it must be shown that 

C ons ide r 

(3.21) 

(3.22) 

so 

(3.24) 

31' 



( 3 . 2 6 )  

Thus if T is restricted s t i l l  further then 

and the operator A satisfies both conditions to be a contraction 

mapping. 

Therefore the sequence 

k+l k 
Y = A Y  (3.28) 

has a unique solution. 

To prove quadratic convergence examine: 

Y k-F1 - y =  r G ( t  s) I J(yk, s )  [yk+'(s) -yk(s)] +[f(yk, s)-f(y, SI] 1 ds 

This equation a r i s e s  f rom taking the difference between 

0 (3.29) 

k+l  k ~ ~ + ' = f [  + J ]  ( y  - y  
k k 

y=y B'Y 

and 

(3.30) 

(3 .31)  
Y =Y 

Appiyithelmean value theorem to the last  t e rm on the right: 

2 3  



k- k 
where y may d i f f e r  f o r  each f and y . So 

j' 

o r  
2 rF 

I 1 - n m -  4 

Defining 

T2 n m -  - 2 - 
k; = 

T2 1 - n m -  4 

Then 

k i  1 2 k  
p(Y J y )  5 k2 p (Y J Y) 

and the quadratic convergence is immediately apparent. 

A more  useful fo rm can be found using 

( 3 . 3 3 )  

(3 .34)  

( 3 . 3 5 )  

(3.36) 

(3.37) 
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(3 .38 )  

( 3 . 3 9 )  
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CHAPTER 4 

THE CHOICE O F  AN INITIAL T R A J E C T O R Y  FOR THE 
METHOD OF QUASILINEARIZA TION 

4.1 The Natural Region of Convergence 

The choice of an initial trajectory for  the method of QL is 

Usually part  of the t ra jectory is known quite well: often difficult. 

the physical variables a r e  constrained and a pr ior i  it may be known, 

f o r  instance, that they follow a roughly elliptical path a s  in  the case  

of a reentering space vehicle. 

usually completely unknown unless a s imi la r  problem has been 

worked before. There a r e  few guides to  u s e  in approximating the 

adjoint variables.  Consequently the range of convergence of the 

technique is of great  practical  importance. 

The remainder of the t ra jectory is 

Three  different methods w e r e  examined to s e e  how much they 

could extend the range of convergence. A l l  the methods were com- 

pared with the usual method of QL. The computational resul ts  a r e  

given in detail in Chapter 6,  where the Brochistochrone problem is 

discussed . 
4 . 2  Method 1 

Using a technique employed by Breakwell, Speyer and Bryson, 

the corrections to the initial conditions (the corrections which insure 

that the boundary conditions at both ends a r e  satisfied) were  multiplied 

by some fraction before use: 

k+l  k k 
y (0) = y (0) + a  (4.1) 

k where LY 

multiplier destroys the quadratic convergence of the method of QL 

is the correction vector. Needless to say, the use  of this 
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(if the multiplier is not equal to one). The constant P, above, is 

either fixed a s  some smal l  number less than the total number of 

iterations expected, o r  is changed by the computer program de- 

pending on the change in the t ra jectory between two successive 

iterations. 

and only the fo rmer  of the two choices was t r ied.  

Here no attempt was made to  optimize the choice of P 

4 . 3  Method 2 

The second method tested is a variation of the first. Here 

k+l(o) = y k (0) + CY k 
Y 

0 < ~ < 1  if k = O ,  ... ,P - -  
E = 1 if k = P + 1  ,..., N 

(4.2) 

a s  in the usual QL technique. 

case  from: 
I 

f 

However, the CY is found in this 
E: 

k-tl k+ l  

P2+\ 
= o .  k t l  - k t l  

€1 'n/2 
and (Y .-...=CY 

4.4  Method 3 

The third method of increasing the range of convergence is 

s imilar  to  the one presented above but retains more  of the elements 

of QL. Again a constant E was used to  slow down the speed of con- 

vergence. Here also if'€ # 1 quadratic convergence is lost; 
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k+l -k+1 
Y = Y  k = P + 1,. ..,N 

(4.4) 

where 
k 

"k+l Y 

Y k-F.l is the k+lst trajectory stored and used for  computing the 

y is the k trajectory 

is the k+lst trajectory a s  computed in the usual manner 
of QL 

matr ix  of partial  derivatives. 

It can be shown theoretically that this  method extends the 

range of convergence. 

that proof as a guide consider the one dimensional case. 

dimensional case follows directly. 

Using the notation of Chapter 3 and following 

The m -  

First the theorem f rom Chapter 3 is simplified without proof 

to  the case  where y is a one dimensional vector.  Then the effect of 

Equation (4.4) is shown in t e rms  of this theorem. 

Problem 

A solution to  the following second order differential equation 

is desired: 

(4 .5)  

y(0) = yo J y(t) = Yf 

For simplicity assume that g is an explicit function of y and 

t .  Then 

(4.6) 
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Theorem 4 . 1  

Now consider the sequence of solutions to  the system: 

all k (4 .7)  k k 
y (0) = Yo # Y (TI = Yf 

where f indicates that the quantity immediately to its left is evaluated 

on the kth trajectory,  and 

Now provided that: 

Then 

a) f is continuous 

b) - exists and is continuous af 
a Y  

af 
a Y  

c )  f and - are Lipschitzian with respect to y 

a) A unique solution to  (4 .6)  exists 

b) The se r i e s  (4.7) converges to  it 

c )  The bound necessary fo r  a contraction mapping is 
given by k 2: 

2 

l-m T /4 
- ‘4 (2 + 2K) 2 k2 - 

(4.9) 

(4.10) 

where m is defined in Theorem 4 . 2 .  Now the theorem from Chapter 

3 is modified to  cover the new algorithm generated by Equation (4.4). 



Theorem- 4.2 

The system f o r  which a solution is desired is still described 
L- uy I A  t-x. E \  Thn A ILCI -Ab-- qlonr i thm of (4.7) is modjfied to  give: 

and 

and 

y k -  (0) - Yo y k (TI = Yf all k (4 .11 )  

k -k+l all k,  0 < E < 1 - 
k+l = E y + (1-E)  y Y 

(4 .13 )  

Now provided that 

a) f is continuous 

b) - exists and is continuous af 
a Y  

af 
aY 

c )  f and - are  Lipschitzian with respect to y 

Then: 

a) 

b) 

c }  

A unique solution to ( 4 . 6 )  exists 

The series (4 .11)  converges to  it 

The bound necessary fo r  a contraction mapping is 
given by k 3' 

O < k g < l  - 

(4 .14)  
2 mT 

4 1 + ~  (2K+1)- - 
2 

1 - m T  / 4  

- m T  I4 
2 kg - 
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Proof 

Define 

af af IF1 -51 I < M I Y 1 - Y 2 1  
Y’Y1 Y’Y2 

m = max (P ,RJQJM)  

A metric space S is defined 

with a met r ic  

(4.15) 

(4.16) 

(4. 17) 

The symbol A is used to denote the usual quasilinearization 

operation of Theorem 4.1.  

The symbol B is used to  denote the operator in (4.11). 

To show that the contraction mapping principle applies it is 

necessary to  show that the operator B has the following properties 

a) if YES then B YES 

b) ify1eS and y2eS then 

P(BYIJ By2) 5 cy p(y,J y2) 0 - < e < (4.18) 
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First show that i f  yes that By ES 

By = (l-E) y + E Ay , 0 < ~ < 1  - (4.19) 

Since YES then Ay ES and s o  directly By ES by convexity. 

contraction mapping principle may be applied. 

Thus tile 

Second, show that 

Cons ide r 
m 

where G is the Green's function 

for t < s S-T 
T 

-(t-T) for t > s T 

- - 
S 

G ( t , s )  = 

and 

So employing the definition of B: 

(4.21) 

(4.22) 

(4.23) 

or 
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m 

now 

so 

with 

- (I-€) c C ( t J s )  (f/ - f I  (4.25) 
Y 1  y2 

Recalling the derivation of p(Ayl Ay2): 

2 m T  
P(BYIJ Byz) 5 Ep(AylJ Ay2) + 7 P(y1Jy2) 

(4.26) 

2 
m T  

(4.27) 

2 m T  
4 

P(Y1J Y2)  
mT ’) - (1 -E) 4 2 

1 -- (4.28) 

P(BY1’ BY2) 5 
m T  
4 

mTL 
4 

P(Y1J Y2)  
mT ’) - (1 -E) 4 2 

1 -- (4.28) 

P(BY1’ BY2) 5 
m T  
4 

2 

4 - 
2 . m T  kg - (4.29) 

1 -- 
4 

(4.30) 

This  completes the proof if 0 < k3 < 1. 

No attempt is made to show quadratic convergence, since it 
occurs only fortuitously in this  case.  The loss of quadratic con- 

vergence is the pr ice  paid for  extending the range of convergence. 
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To show that Method 3 allows a wider range of convergence 

tnan unmudifieu A n r  a plot - i n s  d r a ~ m .  Figwe 4;  Z gives the largest  
2 K f o r  a particular mT /4 which wi l l  still result in 0 - < kg < 1. This  

shows theoretically that a s  E is decreased that the range of con- 

vergence increases. 

The curve E = 1 is the curve for  k2 (the ordinary QL pro-  

cedure). 

convergence. 

Thus if 0 - -  < E < 1, Method 3 has a larger  range of 

The practical  usage of Method 3 is described in detail in 

Chapter 6 using the Brachistochrone as an example, and in general 

with the reentry problem treated in Chapter 7. 
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C H A P T E R  5 

COMPUTATIONAL METHODS 

5.1 Procedure Organization 

To tes t  the foregoing theories two sample problems, the 

Brachistochrone , and the reentry vehicle t ra jectory determination 

problem, have been solved using a large scale  digital computer. In 

this chapter the techniques by which these problems were solved is 

discuss e d . 
In order  to apply the method of QL to  the control problem it 

is necessary to integrate the equations of motion either analytically 

o r  numerically. F e w  rea l  problems can be solved analytically, and 

so numerical  procedures must  be resor ted  to. 

Each iteration of the method requires  seven steps: 

Choose an approximate t ra jectory 

Compute the derivatives along this t ra jectory 

Integrate both the inhomogeneous equations and the 
appropriate homogeneous equations along the approximate 
t ra jectory 

Determine the e r r o r  in the stopping conditions 

Invert the transition matr ix  

Pe r tu rb  the initial conditions of the inhomogeneous 
equations so  that the final e r r o r s  should be nulled out. 

Reintegrate the inhomogeneous equations of motion to  
check that the f ina l  e r r o r s  a r e  zero  using the perturbed 
initial conditions. 

The new trajectory obtained from (7) is used a s  the next 

approximate t ra jectory fo r  (1). Repeat (1) to  (7) until convergence is 

obtained. 

the method of widening the range of convergence discussed in Chapter 

4 is employed. 

The t ra jectory of (7) may be modified before use in (1) if 
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5 . 2  Integration 

Because the method of QL requires that the previous t r a -  

jectory and various derivatives along this trajectory be available a t  

each iteration, care  must be taken to select  a reasonable integration 

scheme. There a r e  a variety of methods discussed i n  the l i terature  

(see,  for  example, 2,5, and 9). F o r  each of the methods discussed 

there is a t rade off between speed of computation and required com- 

puter memory capacity. The methods which require a large com- 

puter memory generally a r e  fas ter  than those which require l e s s  and 

vice versa.  

The program written s tores  the points along the t ra jectory 

and the necessary derivatives. 

and makes use of the large core memory of the IBM 7094. 

Thus it is a relatively "fast" method 

After the trade off between computational speed and required 

memory capacity has been fixed, there a r e  st i l l  several  alternative 

ways to proceed because different integration schemes demand 

different amounts of storage and computation time. To achieve a high 

integration accuracy it is either necessary to use a very smal l  s tep 

s i ze  with a simple integration formula o r  use a larger  s tep s ize  with 

a more complex formula. 

places, f o r  example, 18, 19, 20, and 21. 

The t rade off's a r e  discussed in many 

The integration is performed in three main blocks. The f i rs t  

block crudely initializes the second. The second block is iterated 

until fourth order  accuracy is obtained and is used to initialize the 

t h i r d  block. It is in the third block that the bulk of the integration 

occurs. The integration procedure uses a fixed number of steps. 

The f i r s t  block consists of three steps of Euler integration to 

provide four data points for  each variable. 

fourth order  method and uses: 

The second block is a 
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h - 
y 1 - Y A  - " + - 2. ( 9 y ; + 1 9 y ;  . - - 5 y g + y ; )  

Y2 = Yo + 3 ( Y b  + 4Y' 1 2  + Y' 
h - 

) h ( 3y' + 9y' + 9y; + 3y; 
- 
Y3 = Yo + 8 0 1 

(5.1) 

where h is the step size, the subscripts re fer  to steps in the integration 

and the primes denote the derivative. 

y is the start ing value of y 
0 

y y y a r e  provided initially by the Euler integration 

y , y  , y  a r e  the next choices for y y and y 

1' 2' 3 

1 2 3  1' 2' 
- - -  

3 

The procedure is iterated until the method of 5 . 1  has converged, 

a check on the convergence it is wise to save 17 - yi I for i = 1,2,3. An 

examination of these quantities wi l l  show whether o r  not the method 

has converged. 

A s  

i 

The values of y l ,  y2, and y thus obtained a r e  used to s t a r t  3 
the modified Hamming method: 

- 4h pn+1 - yn-3 + 3 ( 2 ~ :  - Y A - ~ +  2 ~ ~ - 2  ) 
112 

(p - Cn) n+l-  Pn+1 1 2 1  n 
- -  m -  

The vectors p, m, and c in the above represent the predicted, 

modified, and corrected approximations to  the succeeding step. 
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This method is used for  the remainder of the integration. 

It is also a fourth order  method. 

The stability of the modified Hamming method has been 

examined by Chase” and found to be quite good. The use  of the 

initializing formulas, 5.1, is discussed by Ralston and Wilf in  

connection with this method in particular. 

19 

5 . 3  Matrix Inversion and Determination of the Eigenvalues 

To invert the transition matr ix  a program using Gaussian 

Elimination (19) was  written. The program was written with double 

precision arithmetic in order  to eliminate the round-off e r r o r  which 

results from the procedure used. Otherwise this round-off e r r o r  

will destroy the accuracy of the inverse matrix.  

round-off e r r o r  is particularly important here  since Gaussian 

Elimination is a direct procedure and there  is no convenient indi- 

cation of the accuracy of the inverse.  

The elimination of 

The importance of using double precision arithmetic when 

processing a transition matrix cannot be understated either. ’ 

In the case of the reentry problem, the transition matrix is 

so nearly singular that ,  the use of single precision arithmetic resul ts  

in eigenvalues that a r e  an order  of magnitude off. 

The eigenvalues were found by first reducing the transition 

matrix to upper Hessenberg form.  The resulting matrix was then 

reduced by a ser ies  of QR transformations. 2 5 J  2 6 J  278 28 The program 

written follows SHARE program 3006 closely but uses double 

precision arithmetic. 

5.4 The Determination of Partial Derivatives 

If the Hamiltonian can be used to solve for  an analytic 

expression for the control, then the control can be eliminated from 
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the problem being solved, and the application of the method of QL is 

straightforward. 

On the other hand, if the partial derivative of the Hamiltonian 

with respect  to  control cannot be inverted explicitly to  find the con- 

t ro l  as a function of state, then the problem of applying the method 

of QL becomes much more  complex. This occurs  if the control is 

bounded and it is not desired to  have to  include additional multipliers 

in the problem formulation. 

The mkthod of Chapter 3 can then be used to  advantage. In 

the method of Chapter 3 the system 

is solved iteratively using 

p+'=r+(6 af + - af -) a u A  (y k+l - y  k ) 
au ay 

The  treatment of the boundary conditions is omitted a s  they a r e  

dealt with in Chapter 3. 

Associated with either set of equations is: 

(5.4) 

where it must be kept in mind that y represents both the s ta te  and 

the adjoint variables. 

The Maximum Principle states that H should be minimized if 

the cri terion function is minimized and the multiplier associated 

with the cri terion function is positive. 

If u is unbounded this results in the necessary condition 

(when aH/au  contains u): 
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aH - = o  
au (5.6) 

which must  be solved for  u. 

If u is bounded this s ame  equation will result if Valentine's 

method is used. 

However, there  is another approach. If u can be determined 

from the Maximum Principle directly: 

u = u{ min ~ ( y , t ) }  
U 

then the t e r m  au/ay may be found by perturbations: 

(5.7) 

Equation (5.4) can then be applied, and the modified method 

of QL used to solve the problem. 

In cases where the control is bounded it may be more  con- 

venient t o  recognize that on the bound: 

and that off the bound au/ay may be known explicitly if 

aH - = o  
au (5.10) 

can be solved for  the necessary derivatives. 



CHAPTER 6 

THE BRACHISTOCHRONE 

6 . 1  Propert ies  of the Brachistochrone _ _ _ ~  - 

The Brachistochrone is a suitable choice for  a tes t  problem. 

It has  many attractive features:  

(1) It is governed by a set of six ordinary nonlinear 

differential equations 

(2) An analytic solution is available 

(3) It is computationally simple.  

With the Brachistochrone a var ie ty  of t e s t s  were made on the 

foregoing theories:  

A comparison was made between the ra tes  of convergence of 

the undetermined parameter  method for  handling the f r ee  final t ime 

problem. and that used by McGill and Kenneth. 

Experiments were conducted to  s e e  how well  the methods of 

Chapter 4 succeeded in extending the range over which the method of 

QL would converge. 

The effect using the modification of Chapter 3 instead of 

eliminating the control f rom the problem was also tested on the 

Brachistochrone. 

6 . 2  The Equations of Motion 

The problem of the Brachistochrone is the problem of finding 

the path that a mass ,  accelerated by gravity alone, should follow to  

fall  f rom one point to another for minimum time, T. There  a r e  

many variations on the Brachistochrone problem and the one of 

finding the path of a mass  going from a point A to  a vertical  line B is 

worked here .  The coordinate system is shown in Figure 6 .1 .  
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6 

BRACHISTOCHRONE COORDINATE SYSTEM 

FIGURE 6 . 1  
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t 

The difffere.;.ltia! equation nf motion a.re: 

it = v c o s u  
I: - -- -:.- I1 - v D l l l i i  

ir = - g s i n u  

The initial equations are: 

x(0) = 0 

v(0) = v 

h(o) = h 
0 

0 

The final conditions a re :  

x(T) = $ 
h(T) = unspecified 

v(T) = unspecified 

(6.1)  . 

(6 .2 )  

(6 .3)  

Changing f rom (x, h, v) t o  (y , y , y ) and adding the adjoint 1 2 3  T 
variables (y4, y5, y6) to get y = (y, , . . . , Y6)'  

The Hamiltonian f o r  the time optimal control problems is: 

H = 1 + y  (y cosu)  t y  (y s inu )  + y  6 (-g s inu)  4 3  5 3  

The differential equations fo r  the adjoint variables are  

9, = 0 

9, = 0 

jr6 = -y c o s u  - y s inu  4 5 

(6 .4 )  

Since h(T) and v(T) are unspecified there are transversali ty 

conditions to  be satisfied. 
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y4(0) = unspecified 

y5(0) = unspecified 

y4(T) = unspecified 

y5(T) = 0 

y6(0) = unspecified Yg(T) = 0 (6.5) 

The two specified conditions on the adjoint variables com- 

plete the boundary conditions of the system of differential equations 

formulated. 

boundary conditions. 

There are now six differential equations and s ix  

The Hamiltonian may be solved for the optimal control 

directly 

- aH = o = -y y s in  u + y y c o s u  - y g c o s u  (6.6) au 4 3  5 3  6 

or 

Using this solution for  the control, complete solutions may 

be found in the following way. 

First find T and TI from the two simultaneous transcendental 

equations : 

0 7iT' BV 

2Tg 2T = cos - - 

and 
T T '  sin - T 

T T 0 = 2 (xf- x0) -T' - - 
T 

(6.9) 

Equations (6.8) and (6 .9)  result  f rom (6.11, (6.2), and (6.7) directly. 

The intermediate s teps  are skipped. 

Second calculate w 

T 
2T 

w = -  (6.10) 



r q  1 g x = x + -  
0 2w 

g 
0 2  

h = h  t -  
W 

J t + cos w(t-2TI) s inwt 

sinw(t-2Tl) sin wt (6.11) 

g v = - cosw(t-T') 

u = w(t-T') 

W 

These may be used to  compare the  calculated solution with the t rue  

solution, 

In F igures  6.2,  6.3, and 6.4 where it was desired to  have a 

small integration e r r o r ,  48 steps were used in the integration. In 

each of the cases, either 15 o r  16 iterations were employed to  see 

how the methods stabilized (or did not). 

The difference in required IBM 7094 machine time to run these 

problems varied a few percent from one variation to  another. The 

longest was the modified integration scheme which took 10 percent 

m o r e  t ime than either of the others. The programs written were in  

no sense  optimized with respect to  computer execution time and 

required about' 85 seconds for  16 iterations. 

As a check on the 48-step integration accuracy the solution 

was iterated until the only e r r o r  sources  were round-off and trun- 

cation e r r o r s .  Table 6.1 shows a comparison between the calculated 

and the t rue  values. 

6.3 The Effect of Numerical Partial Derivatives 

By the term numerical partial derivatives it is meant that in 

place of solving the Hamiltonian f o r  the control explicitly t o  get an 

analytic expression fo r  it, and the partial  derivatives au/ay, that 

these quantities are found by perturbations as discussed in  5.4.  
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TABLE 6.1 

BRACHISTOCHRONE SOLUTION 

QL 

(QL vs True)  

True 

0.0 

6.0 

1.0 

-0.06378313 

-0.03101964 

6.0 

2.195396 

15.67811 

0.7343791 

0.149~10-~ 

0.124~10-~ 

p is constant, p is zero,  g = 32.172 ft/sec 

48 stems in QL integration 

1 2 0 

0.0 ft 

6.0 ft 

1.0 ftlsec 

-0.06378321 

-0.03101964 

6.0 ft 

2.19540160 f t  

15.678108 ft / sec  

0.7343789 sec 

0.0 

0.0 
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Employing the methods of Chapter 4 a sequence of tes t s  were 

made to see  how f a r  the convergence could be extended. 

The number of iterations, P, made with the convergence 

constant E, not equal to  one was chosen a pr ior i  to see  how the 

methods of extending the range of convergence affects the speed of 

convergence. While choosing P a pr ior i  is not a s  computationally 

efficient as it might be i t  is much more  expletive. 

The trul-lcatinn e r r o r  caused by the finite s teps  taken in the differences 

resu l t s  in the convergence ra te  being slowed down in the middle a s  

shown in Figure 6 .2 .  

final accuracy were effected. 

Neither the initial convergence ra te  nor the 

6.4  Effect of Variable Time Parameter  

A comparison was made between the different techniques of 

Section 2 . 2  for handling the problem of free final time. 

In Figure 6.3 the method of using a free parameter for  solving 

the f r e e  final time case,  Equations (2.18) to  (2.24) a r e  compared 

with McGi l l  and Kenneth's method, Equation (2.17). It is seen 

immediately that the method of using a dummy independent variable 

converges much more  rapidly. There is no difference in the com- 

puting time required per  iteration. 

In Figure 6.4 the convergence and ultimate accuracy of using 

Equations (2.27)  to (2.29) in place of Equations (2.18) to (2.24) is 
illustrated. 

can be attributed to two sources, the lack of any sharp  changes in the 

derivatives in the problem solved and the addition of extra com- 

The more  erratic convergence of the modified method 

putations. 

few percent to the computing time per  iteration. 

In a problem a s  simple a s  this, the modification adds a 

6.5 The Extension of the Range of Convergence 
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To examine the speed of convergence a quantity called Normax 

(from maximum norm) was examined af te r  a fixed number of 

iterations. 

I 52 

k+ 1 k 
Normax = Max I yi (t) - Y i ( t )  I 

i, t 
(6.12) 

then $(t) is the t ime history of the ith variable, including both s ta te  

and adjoint variable, on the k th  1 
iteration. 

Method 1 of Chapter 4 was examined using the Brachistochrone 

as a test problem and it was found that for E: = 0.5  and 0.75 that this 

technique did not have a convergence range even a s  large a s  that of 

the usual QL. No resul ts  a r e  displayed. 

The results of the examination of Method 2 a r e  shown in 

Figure 6.5.  Since P was fixed a pr ior i  the method does not converge 

as rapidly a s  ordinary QL although it does converge over a some- 

what much wider region. 

with E = 0.5. 

The test problem was the Brachistochrorie 

The resu l t s  from Method 3 are shown in  Figures  6 .6  and 6 . 7 .  

This method of. extending ‘the range of convergence works f a r  better 

than that of the other methods examined, and considerably better 

than the usual QL. 

In Figure 6.6 two iterations of Method 3 (E = 0.5) were 

followed by three of the usual QL procedure for  a total of five iter- 
ations. The results are compared with five iterations of the usual 

QL procedure. 

In  Figure 6.7 four iterations of Method 3 (E = 0.25) were 

followed by three of the usual QL procedure fo r  a total of seven iter- 

ations. The same standard of comparison is used as in Figure 6.6. 



Both Figwe 6.6 and Figure F;+ 7 show that at the expense of 

computing t ime a much wider r a n g e  of convergence can be obtained 

with Method 3 than is available i n  ordinary QL and that the more is 

paid the wider the range of convergence is obtained. 
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CHAPTEE 7 

THE REENTRY TRAJECTORY PROBLEM 

The solution of the reentry vehicle trajectory problem is an 

appropriate choice fo r  a more  complex problem. It is well known 

to be computationally difficult because of integration instability and 

the sensitivity of the adjoint variables. 

15,16 The equations of motion a re  those used by Scharmack, 

Breakwell, Speyer, and BrysonJa3 and a r e  s imilar  to  those used by 

Payne. l8 These equations are considerably simplified but are still 

realistic physically. The reentry vehicle is assumed to have a low 

lift-drag ratio. 

The simplifications include the use of an exponential model of 

the atmosphere in place of a more complex pressure-altitude 

relationship and the use of a simple lift drag polar. 

7.2 Two Cases  

Two cases  were formulated to s e e  what differences would 
23 arise. The first is similar to both Breakwell, Speyer and Bryson 

18 15,16 
and Payne 

The  pr imary  differences a r e  those of initial and final conditions , 

control polar, and in the case of Payne the use of a more  accurate 

gravity approximation here. The criterion function also varies: 

Scharmack used both convective and radiative heating, Breakwell used 

velocity , while Payne considered convective heating and sensed 

acceleration. 

and the second case is that solved by Scharmack. 

The two cases are defined m o r e  explicitly in Table 7. 1. 
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TABLE 7 .1  

TWO REENTRY CASES 

[nitial velocity 

[nitial height 

[nitial flight path angle 

Final velocity 

Final height 

Final flight path angle 

Final range 

‘D 

Lif t ,  CL 

3riterion Function 

Case  1 

2 
35 , 000 f t  /sec 

400,000 f t  
0 -8.1 

27 , 000 f t  /sec 

250,000 f t  

0 

Free 
2 1  0.274+1.8 s in  u 

1 1 
1.2 s inu C O S U  

[ntegral convective 
heating 

Case  2 

36 , 000 f t  /sec 2 

400, O O G  f t  

-5.7 0 

1650 f t / s e c  

75,530 f t  

Free 

5, 170,000 f t  

0.88+0.52 cos u 

-0.505 s i n u  

Integral convective 
and radiative 
heating 



The lift drag polar employed i n  Case 2 was 

cos u - 
‘D - ‘DO + ‘DL 

sin u - 
cL - cLQ 

where u is the control angle (angle of attack). 

This is completely equivalent to that used by Case 1: 

2 1  s in  u - 1 1 
‘D - ‘DO “DL 

1 1 s i n u  C O S U  
1 - 

cL - cLo 

(7.1) 

(7.2) 

with the following substitutions in the above equations the equivalence 

can be seen: 
4 

c& = cm t CDL 

1 cm = 2 cm 
(7.3) 

1 u = u / 2  

The quantity to be optimized (minimized) is the total stagnation 

point heating pe r  unit a r e a  including either the convective t e r m  alone 

o r  both radiative and convective te rms:  

T 
J - l  4 d t  

0 

4 = 4, + 4, 

(7.4) 

f o r  both radiative and convective 
heating 

qc= c v3& convective t e r m  (7.5) 



3 12 1 2 . 5  
= 7 . 5 N  (t) i t 4 )  radiative term (7 .6)  % 

The meaning of the symbols is given in Table 3. 

The equations of motion are  defined with respect t o  a two 

dimensional spherical  earth.  See Figure 7 .1 .  They are: 
g s i n y  
0 

(1+ E )2 

V i =  - s in  y R 

7.4 The Choice of Control 

The Hamiltonian is defined as 

H = p  Q h + p  1 i r + p Z j + p g i + P q !  

and 

Po = 1 

With this choice of sign for p the Hamiltonian must be 0 
minimized if the integral of 4 is t o  be minimized. If the opposite 



V - velocity 

E - normalized altitude 

Y - flight path angle 

f - down range distance 

S 
M 

- ratio of frontal area to vehicle m a s s  - 

- gravitational constant go 

- air density at sea level 

B - exponential constant 

R - ear th radius 

C,(U) - drag  coefficient 

C,(U) - lift coefficient 

- drag and lift coefficients c ~ ~ * c ~ ~ c ~  
6 - convective constant 

N - radius of vehicle nose 

a - sensed acceleration 
P 

1 - control constraint U 
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= R = radius of Ear th  

A-B = h = altitude of vehicle 
Ear th  

above 

v = velocity vector 

y = angle between local 
horizon and velocity 
vector 

5 = down range distance 

h 
R 

5 = -  = normalized altitude 

REENTRY VEHICLE COORDINATE SYSTEM 

FIGURE 7 . 1  



f o r  unbounded control but also: 

82H > 0 2 -  
a U  

(7 .9 )  

F r o m  this necessary condition i t  is possible to  choose the sign of the 

control that will minimize the Hamiltonian. 

To find the control fo r  the case where the bound is not reached 

set  

aH - = o  
au 

or 
2 

1 2m cos u SPV C,, s i n u  -I p - o = p  - SPV 
2 2 m  ‘LO 

where H is taken f rom Appendix A s o  

cDo p2 

‘DL piv 
t anu  = - - - 

(7.10) 

(7.11) 

To find the corresponding value of the second partial  of the 

Hamiltonian with respect  to u 

Spv2 S P V  s in  u (7.12) 
P 2 2 m  cLo COSU - 

2 
a H -  

au P i =  ‘DL 
-- 

CDL cos u Spv2 
= P l y  (7.13) 
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Thus f o r  smal l  u the s ign  of the second derivative will  be the 

DL'  product of the signs of .p and C 
1 

is negative then p must  be negative fo r  sma l l  u and If 'DL 1 
conversely if  C is positive the p must be positive for  sma l l  u. DL 1 

Case 2 uses 

CD(u) = 0.88 + 0.52 cos u 

C,(u) =-0.505 s inu  

23 
while Case  1 uses 

1 2 1  C (u ) = 0.274 + 1.8 s i n  u D 
1 1 1 CL(u ) = 1 . 2  s i n u  cos u 

o r  

C (u) = 1.174 - 0.9 COS 2~ D 

L C (u) = 0.6 s i n 2 u  

(7.14) 

(7. 15) 

(7.16) 

which r e s u l t  in different polars being used to determine the control 

has different s i g n s  i n  the  two cases. 
as 'DL 

The polars are illustrated i n  Figure 7.2. 

The equations f o r  the adjoint variables a r e  listed in Appendix 

A,  as a r e  the elements of the matr ix  of partials necessary fo r  QL. 

The computer program used to  solve the equations is described i n  

Chapter 5. 

7.5 Numerical Results 

Case 1 was solved with and without a bound on the control. 

The  constants used are listed in Appendix B. Since the computer 

program was written to .handle control i n  the form of Case 2, the 
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values of the lift-drag parameters  correspond to  Equation (7.16) 

when they a r e  tabulated. 

I r regardless  of whether o r  not the control was bounded the 

range of convergence is quite small .  

approximation to the actual solution was employed as the initial 

guess, the convergence was slow. In fact, it was always necessary 

to  employ the convergence improving constant described in Chapter 
4 for  the f i r s t  few iterations, o r  the method would diverge even with 

eight sections in the approximation of each variable. 

Even if a piecewise l inear 

The  convergence rates fo r  velocity and the second adjoint 

variable a r e  shown in Figure 7.3. 

using an eight section approximation to  the cor rec t  solution and a 

convergence factor of 0 .33  fo r  the first three  iterations of the method. 

The remainder of the iterations were run with a convergence factor 

of 1.0 (ordinary QL). The convergence factor of 0.33 produces the 

flat  portions of Figures  7 .3  and 7.11. 

The figure was generated by 

To  simplify the convergence problem initial guesses were 

made on the adjoint variables,  

by a fourth order  Runge-Kutta integration scheme. l g J 2 0  When a 

guess was made that generated a solution near  the optimal, then QL 

was employed. In the application of QL a small convergence factor 

was used on the first few iterations before switching to  a convergence 

factor, E, of 1.0.  If the guess was far  f rom optimal a new improved 

guess was made. 

These guesses were then integrated 

The final trajectory fo r  Case  1 is shown in Table 7.3, and 

Figures 7.4 and 7.5. The final t ra jectory fo r  the control bounded at 

f 22.5 degrees is shown in Table 7 . 4  and Figures 7.6 and 7.7. The 

convective heating rates are compared in Figure 7.8, the sensed 

accelerations in Figure 7.9, and the controls in Figure 7.10. The - - 
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convergence rate  to the bounded control case f rom an approximate 

solution generated by Runge-Kutta integration is shown in Figure 

7.11. 

The method outlined in Chapter 3 was employed to handle the 

bounds on the control ra ther  than employing either a penalty function 

approach, or ,  Valentine's method. 

Figures 7 . 3  and 7 . 1 1  that the use of this method does not slow down 

the rate of convergence. 

It can be seen by comparing 

P a r t  of the reason for the smal l  range of convergence be- 
comes apparent when the transition matr ix . is  examined. 

is shown in Table 7.5.  

very  nearly multiples of each other. 

value to the smallest is about 

transition matrices that a r i s e  is severa l  different cases ,  a r e  shown 

in Table 7 .6 .  

worse (larger) than f o r  backward integration. 

control case is worse than unbounded cases  which explains the more  

severe convergence problems in the case of bounded control.' 

The matr ix  
It can be seen that the rows (or  columns) a r e  

The ratio of the largest  eigen- 

The eigenvalues for  the 

It is seen that for  forward integration the ratio is 

And that the bounded 
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TABLE 7.5 

TRANSITION MATRIX 

Case 1 - Forward Integration 

Unbounded Control 

aH 

t 
- aH - I aH aH 
ac a p a  ap3 

OR 

I 05 0.260198E-00 -0.2194723-01 -0.2569873 04 
00 0.8199313-05 -0.6808903-06 -0.3694333-01 

0.5373613-06 -0.4438603-07 -0.1977593-03 
0.7685883-03 -0.2266453-03 0. 
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TABLE 7.6 

TRANSITION MATRIX EIGENVALUES 

I 

Unbounded Control 
Forward Integration 

Unbounded Control 
Backward Integration 

22.5O Control Bound 
Forward Integration 

22.5' Control Bound 
Backward Integration 

.194935 

.190635 

.. 179635 

.182535 

82 

~~ 

-. 5336 

-. 5265 

-. 9806 

-. 3873 

x3 

.66123-4 

-. 67213-4 

.36053-4 

-. 97243-4 

x4 

-. 15333-9 

.15623-9 

-. 15383-10 

.1502E-10 
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SUMMARY AND CONCLUSIONS 

u. Q 1 A SuE*m,ry Cf the  Eesults 

The proof in Chapter 3 demonstrates that the modified 

method for handling control directly will converge quadratically, 

under the specified assumptions, to  the final solution. This allows 

the method of quasilinearization to be applied to problem involving 

bounded continuous control without having to  turn to additional multi- 

pl iers  o r  a penalty function approach, 

' 

The method for  extending the range of convergence of the 

method given in Chapter 4 has proven its worth many times over in 

the application of quasilinearization to  practical problems. It .is of 

particular importance since finding the initial guess can be a major  

par t  of getting a solution. 

The Brachistochrone was used a s  a test  problem to evaluate 

the effectiveness of Method 3 of Chapter 4 (see Figures 6.6 and 6.7); 

to show how the use of a numerical approximation to the partial 
derivatives effected the ra te  of convergence (see Figure 6 .2)  and for  

other tes t s  of the theory. It can be seen from the mentioned figures 

that the method of Chapter 4 provides an effective way to  extend the 

range of convergence and that numerically approximating the partial  

derivatives neither slows down the r a t e  of convergence nor does it 

effect the terminal accuracy. 

to  demonstrate that the method of an undetermined t ime scale is a 

f a r  more  efficient technique f o r  solving the problem of an unde- 

termined final time than that presented in the literature. 

The Brachistrochrone was also used 

The method was applied t o  find the trajectory that minimizes 

the convective heating in a reentering space vehicle to  see  how the 
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method behaved on a complex engineering problem. It was on this 

complex problem that the method of Chapter 3 was applied to find 

the trajectory fo r  the case where the control was bounded as well as 
unbounded. The fact that there  is no difference in the rates of con- 

vergence can be seen by comparing Figures  7 .3  and 7.11, and 

proves that the method of Chapter 3 is indeed of practical importance 

for  continuous control problems. Kopp and Moyer" stated that 

other ways of handling control bounds with QL a r e  not straightforward 

which the method of Chapter 3 is. 

The method of quasilinearization has been shown effective in 

the solution of complex engineering problems where the control can- 

not be eliminated from the problem itself. 

8 . 2  - Comments of the Method of Quasilinearization 

The method of quasilinearization is a useful tool in solving 

the two point boundary value problem that grows out of most optimi- 

zation techniques. 

Despite its advantages of programming ease, computational 

speed, and rapid convergence, l1 it 

fects. The first, it shares  with all 

is the sma l l  range of convergence. 

cance the method will not converge, 

does suffer f rom two main de- 

other quadratic methods and that 
F o r  most problems of signifi- 

even with the method of Chapter 

4, from a purely a rb i t ra ry  initial guess on the values of the state 

and adjoint variables. The second difficulty arises out of and com- 

pounds the first. If the method does not converge the use r  of QL is 

no wiser than he was before. 

obeys only an approximate differential equation, the numbers ob- 

tained f rom a divergent solution give few clues as to what the next 

initial guess should be like. 

That is to  s a y  that because the method 
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Once a convergent solution is obtained it is very easy to vary a 

parameter  and to  see how the solution changes. 

been found in staying in a rapidly convergent region while making 

studies of parameters,  s u c h  as observing the effects of different 

control bounds in the reentry example. 

Little difficulty has 

8 . 3  Conclusions 

Quasilinearization has been demonstrated here  to  be a 

powerful technique for  solving engineering problems that are  complex 

and sensitive at  the same time by its ability to solve the reentry 

vehicle trajectory problem. Modifications to the method worked well 

in solving the same problem when bounds were placed on the control. 

There a r e  two main areas for future research  on this method. 

The first is the extension of the proofs of Chapters 3 and 4 to first 

o rde r  ordinary nonlinear differential equations with boundary con- 

ditions at both ends. Without this s tep the theory cannot be regarded 

as complete as, while second order equations can be expressed as 

f i r s t  order  ones, the converse is not always t r u e .  

The second area is the extension of the method to handle 

jumps whether they be in the state variables,  the adjoint variables, 
o r  the control. Without this extension the method cannot be applied 

conveniently to  the class of problems where bounds are placed on 

the states.  
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APPENDIX A 

COMPLETE REENTRY EQUATIONS 

Abbreviations : 

CD = cm + CDL C O S U  

cL - s in  u - 

Equations of motion: 
n 

spv‘ g s i n y  

(1+5 l2 ‘D - 
+ = - -  

2m 

i =  v s i n y  
R 

v c o s y  
= 1 t E  

Hamiltonian : 
1 - 2 312 ( v )12’5 

10000 H = cv3 (g) + 7 . 5 k N p  

g s i n y  
2 

- 
(1+512 

+ p1 

v c o s y  g c o s y  v s i n y  
+ p2 r+m c + R ( l + E )  v ( l + f )  z ) t P 3  R 

v c o s y  
+ p 4  (1+5) 

Cri ter ion Function: 

k = 0 fo r  no radiative heating, k’= 1 otherwise. 
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Ad joint variables : 

11.5 1 - 
312 v 

12.5 p, = f 5 =  - 3cv (N) fl -' -93.75kNp 
(10000) 

- s in  y cos y 
P 3 R  -4 1+5 

g C O S Y  v s i n y  + g s i n y  fi2 = f s =  t p 
(1+512 

v c o s y  v s i n y  
-'3 R + p4 1+E 

12.5 1 

63 = f 7 =  -- BR 2 ( c v 3 ( k r  + 22.5Nk?I2 (&) ) 
2g s i n y  2 

- plptg 'D + (1+5)3 

v c o s y  2g c o s y  

R( 1 +E l2 v( 1 +t l3 cL+--  

v c o s y  

(1+512 
+ p4 

fi4 = f8 = 0 

Control: 

The control is found f rom 

and 
- a2H < o  
au2 

'DL P2 
c w  p1v so tanu = - 
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. 
Part ia 1 De r ivative s 

The following simplifications a r e  employed 

Now 

and 

i =  1,4 
j = 5 ,8  

- -  - 0  i af 

a Y i  

With 

'D -t 2g 
- =  afl j3RSpv2 
a 5  2 m  (1+513 

- = -  af2 v s i n y  + g s i n y  

R(l+  El v( 1+ 5)2 ar 
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af3 s i n y  - = -  
av R 

af3 - v c o s y  - -  
a7 R 

af4 v s i n y  - = -  
a 7  1+5 

af4 v c o s y  

at (1+EI2 
- = -  

10.5 1 - 
312 v - = -  af5 6cv (:I- 107.8125 kNp 12.5 

(10000) av 

SP 2g c o s y  
+P1n c D + p 2  3 2 

v (1+5) 

s in  y 2g s i n 7  cos y + af5 - 
- '2( R( 1+5) v2( 1 +5 1 
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12.5  
2 3 1 2  v - = + + . 5 m  (*) + 93.75 kNp 

af 

aE (1  0000) 

5 

2g cosy cos y 

3 )  + p 4  (1+5)2 
+ 

v2(1+E 1 

s in  y 2g s i n y  cos y 
2) - p3 R + 

V2 ( 1 +E 1 

v c o s y  -- v s i n y  
+ p3 R + p 4  1+5 

-= - 2g cosy v s i n y  2g s i n y  s in  y af6 

- p2 ( R(l+f)2 v( 1+5) aE p1 

-- 
12 .5  

1 
af7 - , B R ( c v 2 ( ~ ~ + 9 3 . 7 5 k N p  3 3 1 2  v 

(1 0000) av 

2g  c o s y  cos y 
+ p4 

- 
v2(1+5) 3 )  (1+512 
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4 

af7 2 g  cosy  
a 7  P1 
-= - 

(1+5l3 

((pR)2spv 2v  cosy 6 g  cosy 

v ( l + f  14 - p2 2m 

2v C O S Y  

2 
CDL s inu  afl s p v  -=- 

au 2 m  
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c 

2 n - -  

pn3pv c C O S U  
pzspv -- 

2 2 m .  LO - CDL s i n u  -I p au '1 2m 

au s in  u cos u 
av V 
- = -  

au s in  u cos u -= - 
aP1 p1 

au - s i n u  cos u -- 
ap2 p2 
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APPENDIX B 

REENTRY PROBLEM CONSTANTS 

Ccnstant Case i Case  2 Units 

Gravitational constant 

A i r  density at sea level 

A i r  density exponential 

p =  constant 

E a r t h  Radius 

R =  

Fronta l  area of vehicle 

s =  

Mass of vehicle 

m =  

Radius of vehicle nose 

N =  

Convective heating 

c =  

Radiative heating 
1 

c =  

Control Constants 

cDo 

‘DL 

2 32.172 32.172 f t  /sec 

s lug / f t  3 . 2 7 0 4 ~ 1 0 - ~  0 . 2 3 7 6 9 ~ 1 0 - ~  

20.035 f t  6 20.9xlO 

1.064 1 .0  ft2 

2.0 2.0 slug 

4 . 0  4 . 0  f t  

BTU sec 0. 2 x 1 ~ - 7  0. 2 x 1 ~ - 7  
f t3 I d  

11.5 -50 B T U  sec 
ft  15.5 0 7 . 5 ~ 1 0  

1.174 0.88 

-0.9 0.52 

0.6 -0.505 
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